MODBUS TABLE ORGANIZATION

$\begin{gathered} \hline \text { Starting Address of the Group } \\ \text { Registers (Dec) } \\ \hline \end{gathered}$	Starting Address of the Group Reaisters (Hex)	$\begin{aligned} & \text { System Version } \\ & \text { (Release) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { System Version } \\ \text { (Build) } \\ \hline \end{gathered}$	Group Name (Text)	$\begin{gathered} \hline \text { Group Code } \\ \text { (Hex) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Group Complexity } \\ \text { (Hex) } \end{gathered}$	$\begin{gathered} \hline \text { Group Version } \\ \text { (Hex) } \\ \hline \end{gathered}$
16384	4000	01	11	State of Breaker	5102	10	0100
29184	7200	01	11	Three-phase Electric Protection	7303	10	0101
20480	5000	01	11	Three-phase Electric Measurement	7103	30	0100
32768	8000	01	11	Single-channel Thermal Measurement	8100	10	0100

Function Code (Dec)	Exception Codes (Dec)	Data Encoding
2 (Read Discrete Inputs)	1,2,3	$\begin{aligned} & \text { "Big Endian" (most } \\ & \text { significant byte first) } \end{aligned}$
4 (Read Input Registers)	1,2,3	$\begin{array}{\|l\|l} \hline \text { "Big Endian" (most } \\ \text { significant byte first) } \end{array}$

Physical Layer	Trasmission Modes	Device Addressing	Baud Rates (bit/s)	Data Bits	Data bits trasmission sequence	Parity	Stop Bits
standard EIA/TIA 485 (RS-485) twowire configuration	RTU	1 1 247	$\left.\begin{array}{\|c\|} \text { programmable (1200, 2400, } \\ 4800,9600,19200,38400) \end{array} \right\rvert\,$	8	$\begin{aligned} & \text { Least significant bit } \\ & \text { first } \end{aligned}$	NONE	1

MASTER/SLAVE COMMUNICATION TIMING

Timer Description	Timer Value (msec)
Inter-character time-out	$<1,5$ character times
Response delay (from master request)	-
Delay Time (between two master trasmissions)	-

REFER ALSO to:
www.modbus.org MODBUS over serial line specification and implementation guide V1.0
nOTE:

[^0]| Register Number | Register Address (Dec) | Register Address (Hex) | Dimension [bit] | Description | Note | Read Function Codes (Dec) | $\begin{gathered} \hline \text { Data } \\ \text { Storing } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16385 | 16384 | 4000 | 3 | State of Breaker | | | |
| 16385 | 16384 | 4000 | 1 | Open | The information reported here "self-resets" when the condition that generated it ends. | 2 | |
| 16386 | 16385 | 4001 | 1 | Closed | The information reported here "self-resets" when the condition that generated it ends. | 2 | |
| 16387 | 16386 | 4002 | 1 | Tripped | The information reported here "self-resets" when the condition that generated it ends. | 2 | |
| 29185 | 29184 | 7200 | 9 | Three-phase Electric Protection | | | |
| 29185 | 29184 | 7200 | 1 | Overload pre-alarm (threshold I1) | The information reported here "self-resets" when the condition that generated it ends. | 2 | |
| 29186 | 29185 | 7201 | | Overload pre-alarm (>threshold I2) | The information reported here "self-resets" when the condition that generated it ends. | 2 | |
| 29187 | 29186 | 7202 | 1 | Over-temperature alarm (>threshold T) | The information reported here "self-resets" when the condition that generated it ends. | 2 | |
| 29188 | 29187 | 7203 | 1 | RESERVED (returns "0") | | 2 | |
| 29189 | 29188 | 7204 | 1 | Overload P. Relay Tripped (no phase indication) | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative):
 - the detection of the device in Closed state
 - the detection of a minimum current value on the phases.
 The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the
 Trinned Relav sianal must he maintained un until the reset condition intervenes) | ${ }^{2}$ | Y |
| 29190 | 29189 | 7205 | 1 | Short circuit P. Relay Tripped (no phase indication) | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative):
 - the detection of the device in Closed state
 - the detection of a minimum current value on the phases.
 The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the
 Trinned Relav sianal must he maintained un until the reset condition intervenes) | 2 | Y |
| 29191 | 29190 | 7206 | ${ }^{1}$ | Device Protection Relay Tripped ("III element", no phase indications) | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative):
 - the detection of the device in Closed state
 - the detection of a minimum current value on the phases.
 The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the
 Trinned Relav sianal must he maintained un until the reset condition intervenes) | 2 | Y |
| 29192 | 29191 | 7207 | 1 | Earth Fault Tripped | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative):
 - the detection of the device in Closed state
 - the detection of a minimum current value on the phases.
 The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the
 Trinned Relav sianal must he maintained un until the reset condition intervenes) | 2 | Y |
| 29193 | 29192 | 7208 | 1 | Over-temperature P. Relay tripped | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative):
 - the detection of the device in Closed state
 - the detection of a minimum current value on the phases.
 The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the
 Trinned Relav sianalmust he maintained whuntil the reset condition intervenes) | 2 | Y |

Register Number	Register Address (Dec)	Register Address (Hex)	Dimension [bit]		Description	Note	$\begin{array}{\|c\|} \hline \text { Read } \\ \text { Function } \\ \text { Codes } \\ \text { (Dec) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Write } \\ \text { Function } \\ \text { Codes } \\ \text { (Dec) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Data } \\ \text { Storing } \end{gathered}$
				(no COILS availables)					

Register Number	Register Address (Dec)	$\begin{aligned} & \hline \text { Register } \\ & \text { Address } \\ & \text { (Hex) } \end{aligned}$	Dimension [word]	Bit Position	Description	Type	Scale	Unit	Range	Note	$\begin{gathered} \text { Read } \\ \text { Function } \\ \text { Code } \end{gathered}$	$\begin{gathered} \hline \text { Data } \\ \text { Storing } \end{gathered}$
16385	16384	4000	6		State of Breaker							
16385	16384	4000	1	State of	RESERVED (returns error 84h)						4	Y
16386	16385	4001	1		Operations counter					Total value, may not be zeroed	4	Y
16387	16386	4002	1		Maximum Number of Operations					Not configurable	4	Y
16388	16387	4003	1		Breaker Features - Rated Current		1	A			4	Y
16389	16388	4004	1		Breaker Features - Device Type and number of Poles						4	Y
				3 $\div 0$	Poles: number				$1 \div 4$		4	Y
				4	Poles: neutral position (left(1)/right(0))						4	Y
				$7 \div 5$	RESERVED (returns"0")						4	Y
				8	Type of device: Isolating switch (0)/ Automatic (1)						4	Y
				9	Type of device: Repulsive Breaker (0)/Non Repulsive Breaker (1)						4	Y
				15 $\div 10$	RESERVED (returns "0")						4	Y
16390	16389	4005	1		Tripping Features - Breaking capacity		0,01	kA			4	Y
29185	29184	7200	30		Three-phase Electric Protection							
29185	29184	7200	1		Overload P. relay (total) Tripped Counter (no phase indication)						4	Y
29186	29185	7201	1		Short circuit P. relay (total) Tripped Counter (no phase indication)						4	Y
29187	29186	7202	1		Device Protection Relay (total) Tripped Counter ("III element", no phase indications)						4	Y
29188	29187	7203	1		Earth Fault P. Relay (total) Tripped Counter						4	Y
29189	29188	7204	1		Over-temperature P. Relay (total) Tripped Counter						4	Y
29190	29189	7205	1		Last Release data Buffer: "Tripped" type reading only bit reply						4	
				0	Overload P. Relay Tripped Reply						4	
				1	Short-circuit P. Relay Tripped Reply						4	
				2	Device Protection Relay Tripped Reply ("III element")						4	
				3	Earth Fault P. Relay Tripped Reply							
				4	Over-temperature P. Relay Tripped Reply							
				5	Differential Tripped Reply						4	
				15 $\div 6$	RESERVED (returns "0")						4	
29191	29190	7206	2		Last Release data Buffer: Interrupted current or temperature			$\mathrm{mA}^{\circ}{ }^{\circ} \mathrm{C}$		Expressed in "numeric coding"	4	
29193	29192	7208	1		G1 - overload: levels			A/\%		Expressed in "numeric coding"		Y
29194	29193	7209	1		G1- overload: times			msec		Expressed in "numeric coding"	4	Y
29195	29194	720A	1		G1-overload: options							Y
				0	disabled(1)/active(0)						4	Y
				1	absolute value(1)/\%In(0)							Y
				$4 \div 2$	I2t=k MEM OFF(001)/[2t=k MEM ON(000)						4	Y
				$7 \div 5$	RESER VED (returns "0")						4	Y
				15 $\div 8$	point of work, Ir multiple						4	Y
29196	29195	720 B	2		G1 - short circuit which may be delayed: levels			A/\%		Expressed in "numeric coding"	4	Y
29198	29197	720 D	1		G1 - short circuit which may be delayed: times			msec		Expressed in "numeric coding"	4	Y
29199	29198	720 E	1		G1 - short circuit which may be delayed: options						4	Y
				0	Bit0=disabled(1)/active(0)						4	Y
				1	absolute value(1)/\%Ir(0)						4	Y
				$4 \div 2$	curve $\mathrm{t}=\mathrm{k}(001) /[2 \mathrm{t}=\mathrm{k}(000)$						4	Y
				7*5	RESERVED (returns "0")							Y
				15 $\div 8$	Point of work for I2t curve, multiple of Ir)						4	Y
29200	29199	720 F	4		RESER VED (returns "80000000h", "8000h", "8000")			A/\%		Expressed in "numeric coding"	4	Y
29204	29203	7213	2		G1 - device protection: levels			A $/$ \%		Expressed in "numeric coding"	4	Y
29206	29205	7215	1		G1 - device protection: times			msec		Expressed in "numeric coding"		r
29207	29206	7216	1		G1 - device protection: options							Y
				0	disabled(1)/active(0)						4	Y
				1	absolute value(1)/\%In(0)						4	Y
				$15 \div 2$	RESERVED (returns "0")						4	Y
29208	29207	7217	1		G1 - earth: levels			A/\%		Expressed in "numeric coding"		Y
29209	29208	7218	1		G1- earth: times			msec			4	
29210	29209	7219	1		G1 - earth: options						4	Y
				0	disabled(1)/active(0)							Y
				1	absolute value(1)/\%In(0)						4	Y
				4+2	curve $\mathrm{t}=\mathrm{k}(001) / \mathrm{I} 2 \mathrm{t}=\mathrm{k}(000)$						4	r
				7*5	RESERVED (returns "0")						4	Y
				15 $\div 8$	Point of work for I2t curve, multiple of Ig						4	Y
29211	29210	721A	1		G1 - neutral protection: levels			\%		Expressed in "numeric coding"	4	Y
29212	29211	721B	1		G1 - neutral protection: options						4	Y
				0	disabled(1)/active(0)						4	Y
				1	"0" (\%phase), valid for Overload protection, may be delayed and Instant Short Circuit						4	Y

$\square \mathbf{l e g r a n d}$

				$4 \div 2$	${ }^{\prime \prime} 0^{\prime \prime}$ (phase curve)				4	Y
				$15 \div 5$	RESERVED (returns "0")				4	Y
29213	29212	721 C	1		G1 - over-temperature protection: levels		${ }^{\circ} \mathrm{C}$	Expressed in "numeric coding"	4	Y
29214	29213	721D	1		G1 - over-temperature protection: times		msec	Expressed in "numeric coding"	4	
20481	20480	5000	5		Three-phase Electric Measurement					
20481	20480	5000	1		Phase 1 Current Value (R)	unsigned integer	A	Expressed on "numeric coalng"; without mark (fixed more significant bit = 0)	4	
20482	20481	5001	1		Phase 2 Current Value (S)	unsigned integer	A	(Expressed on "numeric coding"; without mark (fixed more significant bit $=0$)	4	
20483	20482	5002	1		Phase 3 Current Value (T)	unsigned integer	A	Expressed on "numeric coding"; without mark (fixed more significant bit = 0)	4	
20484	20483	5003	1		Neutral Current Value	unsigned integer	A	Expressed on "numeric coding"; without mark (fixed more significant bit = 0)	4	
20485	20484	5004	1		Earth Current Value	unsigned integer	A	Expressed on "numeric coalng"; without mark (fixed more significant bit = 0)	4	
32769	32768	8000	1		Single-channel Thermal Measurement Sensor 1 Temperature Value	signed integer	${ }^{\circ} \mathrm{C}$	Expressed in "numeric coding"	4	

Register Number	Register Address (Dec)	Register Address (Hex)	Dimension [word]	Bit Position	Description	Type	Scale	Unit	Range	Note	$\begin{array}{\|c\|} \hline \text { Read } \\ \text { Function } \\ \text { Codes } \\ \text { (Dec) } \\ \hline \end{array}$	Write Function Codes (Dec)	$\begin{gathered} \hline \text { Data } \\ \text { Storing } \end{gathered}$
					(no HOLDING REGISTERS availables)								

[^0]: Fie and printed copies of this document are not subject to document change control.

